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Abstract

There is increasing interest in enforcing fairness requirement in algorithmic de-
cision making (ADM) system since biased decision is sometimes still inevitable
due to implicit bias embedded in data. We study the problem of fairness con-
strained deep learning, where the goal is to ensure that sensitive information does
not unfairly influence the outcome of a deep neural network. The primal-dual
fairness-enforcing algorithm is proposed and its convergence and generalization
guarantee is shown. To validate the soundness of our method, we also conduct
extensive experiments based on benchmark dataset. Experimental results indicate
that our method could effectively reduce bias to as small as 2%.

1 Introduction

Algorithmic decision-making system (ADM) is increasingly widely used in multiple applications
including credit-scoring, essay-grading and job applicant selection. However, because of the implicit
bias embedded in data that drives such systems, the decisions given by them are often biased against
some underrepresented groups and therefore cause discrimination. At the same time, despite the
wide applicability of deep neural network in unstructured data like text and image classification,
the fairness issues underlying in those applications are yet to be addressed extensively by machine
learning community. In this paper, we will study fairness-preserving deep learning with the emphasis
of its theoretical guarantee of fairness. We will also evaluate and validate our theoretical using
benchmark dataset for fairness machine learning.

Many attempts have been made to formalize and foster fairness in machine learning applications.
Dwork et.al first formalized the fairness in classification and this work serves as the prelude of
many subsequent works [7]. Chouldechova et.al provided a comprehensive review of various
notions of fairness and five promising directions to work on [4]. Most work on fairness-preserving
algorithms fall into the three-phase paradigm of machine learning workflow, i.e. preprocessing of
data, in-processing of algorithm and postprocessing or predictions. Some notable works include
Kamiran et.al.’s preprocessing and postprocessing strategies[9][10] and Kamishima et.al.’s algorithmic
modification strategy[11].

2 Methods

We consider the binary classification problem under fairness constraints. More specifically, suppose
we have the dataset S = {(xi,gi, yi)}ni=1, where xi ∈ Rd is the feature vector, yi ∈ {0, 1} is the
label, and gi is the protected attribute. For example, gi can be race, gender, etc. Our goal is to learn a
classifier based on (deep) neural networks under the fairness constraints. In particular, we consider
the fairness constraints which can be formulated as the following linear inequality constraint

Au(f) ≤ c, (2.1)

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.



where A ∈ RM×K , c ∈ RM describes the property of the fairness constraints, and u(f) ∈ RK with
each entry ui(f) denotes a conditional moment that is defined as ui(f) = E

[
hi
(
X,y,G, f(X)

)
| εi
]
.

Note that hi : X ×G×Y×range(f)→ [0, 1] and εi represents an event which depends on (X,y,G).
It has been shown in [1] that a wide range of definitions of fairness, such as demographic parity and
equalized odds, can be transformed into the linear constraint (2.1).
Definition 2.1 (Demographic Parity (DP)). A classifier f satisfies demographic parity under a
distribution over (X,A, y) if its prediction f(X) is statistically independent of the protected attribute
A - that is, if P[f(X) = ŷ|A = a] = P[f(X) = ŷ] for all a, ŷ. Because ŷ ∈ {0, 1}, this is equivalent
to E[f(X)|A = a] = E[f(X)]

Definition 2.2 (Equalized Odds (EO)). A classifier f satisfies equalized odds under a distribution
over (X,A, y) if its prediction f(X) is conditionally independent of the protecte attributeA given the
label y - that is, if P[h(X) = ŷ|A = a, Y = y] = P[h(X) = ŷ|Y = y] for all a, y and ŷ. Because
ŷ ∈ {0, 1}, this is equivalent to E[f(X)|A = a, Y = y] = E[f(X)|Y = y] for all a, y.

Given the linear inequality fairness constraints in (2.1), we propose to solve the following empirical
constrained optimization problem

min
f∈F

1

n

n∑
i=1

`
(
f(xi), yi

)
subject to Aû(f) ≤ ĉ, (2.2)

where F denotes the function class of (deep) neural network, ` is the loss function, û(f) is the
empirical conditional moments with each entry µ̂j =

∑n
i=1 hj(xi, yi, gi, f(xi))/n given εj holds,

and ĉ = c + ε with each entry εk ≥ 0, which denotes the relaxation of the fairness constraints in
practice. In order to solve the constrained optimization problem (2.2), we follow the method proposed
by [1]. More specifically, we propose to find a randomized classifier over the convex hull of the
function class F . Intuitively speaking, by adding the fairness constraints, we will reduce the the
original function class. Therefore, considering the randomized classifier from the convex hull of
the original function class can give us better trade-off between the model accuracy and the fairness
constraints. As a result, we propose to solve the following constrained optimization problem

min
Q∈∆

∑
f∈F

Q(f)
1

n

n∑
i=1

`
(
f(xi), yi

)
subject to A

∑
f∈F

Q(f)û(f) ≤ ĉ, (2.3)

where Q is the randomized classifier, ∆ is the set of all distributions over F . The optimization
problem in (2.3) can be understood as follows: the convex hull of the function class F is consists
of the finite number of classifiers, and each of them has a probability Q. Our goal is to find the
probability Q (the best combination of f ’s) that minimizes the objective function in (2.3) under the
fairness constraints.

For the constrained optimization problem in (2.3), we can get its corresponding Lagrangian as follows

L(Q,λ) =
∑
f∈F

Q(f)
1

n

n∑
i=1

`
(
f(xi), yi

)
+ λ>

(
A
∑
f∈F

Q(f)û(f)− ĉ
)
,

where λ ∈ RK
+ is the Lagrangian multiplier. Therefore, the constrained optimization problem in (2.3)

is equivalent to the following min-max problem

min
Q∈∆

max
λ∈RK

+

L(Q,λ). (2.4)

Note that L is convex with respect to Q and λ, we can solve the this problem by some existing
algorithm, such as the exponential gradient algorithm [8]. Since the main focus of this paper is about
the generalization performance of the (deep) neural network based classifier as well as how to choose
appropriate neural networks to improve the performance of the classifiers, we do not lay out the
detailed algorithms for solving this min-max optimization problem.

3 Main Results

In this section, we lay out the main results of this paper.
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3.1 Over-parameterized ReLU networks as the function class

In this subsection, we show that why over-parameterized ReLU networks can be a good choice for
the fairness constrained binary classification problem. Recall that we are going to solve the min-max
problem (2.4), and the key to solve this problem is the following minimization step given the dual
variable minQ∈∆ L(Q,λ). Because L is linear in Q, the minimizer can always be chosen to put all
of the mass on a single classifier f . Thus, we want to minimize the following loss function with
respect to one f

L(f,λ) =
1

n

n∑
i=1

`
(
f(xi), yi

)
+ λ>(Aû(f)− ĉ).

Suppose we consider `(f(xi), yi) = 1{f(xi) 6= yi}, we can get

L(f,λ) = −λ>ĉ+
∑
m,k

Mm,kλm
pk

1

n

n∑
i=1

hi
(
xi, yi,gi, f(xi)

)
1{(xi, yi,gi) ∈ εk}

+
1

n

n∑
i=1

1{f(xi) 6= yi},

where pj = P̂(εj). Let us define C0
i and C1

i as follows

C0
i = 1{yi 6= 0}+ +

∑
m,k

Mm,kλm
pk

1

n

n∑
i=1

hi
(
xi, yi,gi, 0

)
1{(xi, yi,gi) ∈ εk},

C1
i = 1{yi 6= 0}+ +

∑
m,k

Mm,kλm
pk

1

n

n∑
i=1

hi
(
xi, yi,gi, 1

)
1{(xi, yi,gi) ∈ εk},

we can obtain that minimize L(f,λ) is equivalent to minimize the following cost-sensitive objective
function

1

n

n∑
i=1

f(xi)C
1
i + (1− f(xi))C

0
i . (3.1)

This formulation tells us that we can actually solve the minimization problem minQ∈∆ L(Q,λ) even
the constraint depends on f . Furthermore, by plugging the definition of C0

i and C1
i , we can see that

the minimizer of the cost-sensitive problem in (3.1) is the one that can exactly correctly classify all
the data. Inspired by this observation, we propose to use the over-parameterized ReLU networks as
the function class for the fairness constrained binary classification problem since it can achieve zero
training loss [13, 6, 2] as well as main good generalization performance [3] by using the gradient
based training algorithms. As a result, we propose to solve the inner minimization problem by replace
the f in (3.1) with the loss of training neural networks.

3.2 Generalization performance

In this subsection, we lay out a preliminary generalization results of our proposed method using
L-layer neural networks as our function class. More specifically, we consider the following function
class

F = {f : Rd → R : ‖Wi‖2 ≤ si, i = 1, . . . , L},

where we have f to be a neural network of the following form

f(x) = v>σL(WLσL−1(WL−1 . . . σ1(W1x) . . .)), (3.2)

where σi : Rdi−1 → Rdi is the ReLU activation function, Wi ∈ Rdi×di−1 is the weight matrix for
i = 1, . . . , L, v ∈ RdL . In addition, we assume that ‖v‖2 ≤ Vd and maxi ‖xi‖2 ≤ B. We have the
following results.
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Theorem 3.1. Let (Q̂, λ̂) be the solution of the min-max problem in (2.4). There exists some
constants {ci}3i=1 such that if we set the relaxation εm as εm ≥ c1

∑
k |Mm,k|(

√
log(1/δ)/nk),

where nk = |{i : (xi,gi, yi) ∈ εm}|, then with probability at least 1− c2δ, we have

E[`(Q̂(X), Y )]− E[`(Q∗(X), Y )] ≤ c3
log(1/δ)√

n
+ c4

B
√
LVdΠL

i=1si√
n

,

where Q∗ is the minimizer of the population loss. In addition, we have the output Q̂ satisfies all the
fairness constraints.
Remark 3.2. According to Theorem (3.1), we can see that the minimizer of the min-max problem
satisfies all the fairness constraint. In addition, it will have the excess risk at the order of O(n−1/2).
Note that in practice, we cannot exactly solve the min-max problem. Thus, there will be an extra
optimization term in our final results when we take into account the effect of different optimization
algorithms.
Remark 3.3. In the current paper, we haven’t figure out the effect of the fairness constraints on the
Rademacher complexity of the neural network function class we considered. Therefore, we follow
the proof procedure in [1] to establish the excess risk of our method. To prove this result, we only
need to get the Rademacher complexity of the function class we considered. According to the proof
of Theorem 1 in [12], we get the Rademacher complexity of the function class we considered at the
order Õ(B

√
LVdπ

L
i=1si/

√
n). The remaining step is to make use of the same proof stratage as in the

proof of Theorem 4 in [1]. Since this part is not our contribution, we just ignore the detailed proofs
here.

4 Experiment

In order to validate the soundness of our theoretical analysis, we choose the relatively simple two-
layer parameterized ReLU neural network as our model. Additionally, adult performance dataset [5]
is chosen for comparison purposes with other literature [1].

The evaluation for fairness preserving algorithms generally involve error and violation of fairness
metrics, which are defined as

Error =
1

n

n∑
i=1

1

{
f̂ (xi) 6= yi

}
Violation =

1

n

n∑
i=1

∣∣∣f̂ (xi)− f̂ (xi|ai)
∣∣∣

where we note that error is empirical 0-1 loss while fairness violation is the empirical absolute
difference between prediction and conditional prediction.

At the same time, when the choice of tolerance for fairness violation ε varies, tradeoff between error
and fairness might emerge. Specifically, we will consider

• Evaluating error and fairness violation as a function of training iteration.
• Evaluating tradeoff between error and fairness violation as fairness violation ε changes.

In the following two subsections, we will address both of them and provide comparative analysis
with other machine learning algorithms including Logistic regression and AdaBoost.

4.1 Convergence Visualization

As is shown in Figure 1, our algorithm could converge within 10 iterations and in some cases
(optimizing over EO in Logistic regression), the convergence is made possible with only 6 iterations.
Note that our algorithm terminates when duality gap becomes smaller than predefined threhold ν and
therefore no consistent decrease in both error and fairness violation is guaranteed.

When comparing performance of different fairness metrics, it could be seen that the optimization
over EO could provide more desirable results for all three models, where both fairness violation and
error are low when iteration terminates. This probably result from its relatively simpler conditional
expectation formulation than DP since EO does not require conditioning on protected attributes ai.

Across three different models, it is worthwhile to note that neural network does not necessarily
provide better results than the other two. One explanation for this is that dataset we use is structured
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while neural network models are more applicable for applications involving unstructured data like
image, audio and text. Similar experimentation procedures could be carried out when such datasets
are available.

Neural net Logistic regression AdaBoost
Figure 1: Error (red) and fairness violation (green) with respect to number of iterations under EO
(up) and DP (down)

4.2 Tradeoff Visualization

When the fairness violation parameter ε is set to 0.002, 0.004, · · · , 0.01, the resulting error and
fairness violation could be computed with testing data and this tradeoff shown in Figure 2.

Since fairness parameter ε mandates the level of fairness violation user could accept, it is generally
expected to see the increase in fairness violation when ε is set larger. However, despite expected
behavior of both Logistic regression and AdaBoost, it is not the case for neural network, where
inconsistent violation-error tradeoff appears. Specifically, when optimizing over EO, the largest
tolerance (ε = 0.1) and smallest tolerance (ε = 0.02) give almost the same fairness violation albeit
the latter’s significant reduction in error. At the same time, what is also counter-intuitive is that
best result is yielded when ε = 0.08, in which both fairness violation and error is the lowest among
five different choices of ε. Similar phenomenon also emerges when optimizing over DP, where we
observe that better fairness guarantee might not increase error. This inconsistent behavior makes the
tradeoff evident for other two models hardly visible in neural network.

One way to interpret this behavior is the non-convexity of neural network. Both Logistic regression
and AdaBoost could be formulated as a convex optimization problem, the global optimal could be
attained using our algorithm. However, it is not likely for neural network to attain global optimal
with our algorithm. Therefore, every point shown in the figure correspond to local optimums, where
there are no guarantees for consistent behavior when trading off fairness violation and error.

Therefore, we note that when adopting neural networks to practical fairness preserving machine
learning system, fairness violation tolerance ε would be an additional hyperparameter to tune to
achieve best performance.

At the end of this section, we present a preliminary result using over-parameterized neural networks.
It can be seen from Figure 3 that, the results of over-parameterized neural networks are better
than shallow networks. Due to the time limit, we do not fine tune our results with respect to the
over-parameterized neural networks. We believe we can get much better results in our future work.
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Neural net Logistic regression AdaBoost
Figure 2: Testing tradeoff with different ε under metric EO (up) and DP (down)

Figure 3: Results of ver-parameterized networks under metric EO

5 Conclusion and Future Work

In this work, we investigate the performance of deep learning for the classification problem under the
fairness constraints. More specifically, we propose to use over-parameterized neural networks for
fairness constrained classification problem. In addition, we provide a generalization performance
for a specific class of neural networks. For our future work, we will fully study the empirical
performance of the over-parameterized neural networks for this problem. In addition, we will prove
tighter generalization performance of our method by study the effect of the fairness constraints of the
neural network function class.
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