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Background and Motivation

Algorithmic Decision Making (ADM)
system is widely used in daily life

GRE e-Rater
Credit scoring
Job applicant selection
Many others...

But they do not necessarily give fair
predictions
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Two Numerical Examples - Student Performance Dataset

Underrepresented groups are biased by machine learning algorithms
Female
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Two Numerical Examples - Adult-Income Dataset

Underrepresented groups are biased by machine learning algorithms
African-American, Asian-Pacific-Islander, Amer-Indian-Eskimo, Female
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Description

Definition
A machine learning algorithm is said to be fair when predicted outcomes
operating on data is non-discriminatory for people based on their protected
status such as race, sex, etc.

How to characterize the fairness (non-discrimination) of prediction?
What methods are available to enforce non-discriminatory prediction?
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Fair Metrics Overview

Two types of principle
"We Are Equal" (WAE): all groups are similar abilities with respect to the
task
"What You See is What You Get" (WYSIWYG): observations reflect
ability with respect to the task.

Turn to fairness tree
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Fairness-Preserving Algorithms Overview

Proprocessing Methods Adjust feature space
In-Processing Methods Adjust machine learning algorithms with fairness

constraints
Postprocessing Methods Adjust prediction result
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Preprocessing Methods - Uniform Sampling

∀A ∈ {a1, a2, · · · , an}, y ∈ {c1, c2, · · · , cm}, compute weight associated
with each group (ai, cj )

W (ai, cj ) =
|{x ∈ X : A = ai }| |{x ∈ X : y = cj }|

|D||{x ∈ X : A = ai, y = cj }|

=
Pr[A = ai ]Pr[y = cj ]

Pr[A = ai, y = cj ]

Uniform sampling D with weights W (ai, cj )
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In-Processing Methods - Fairness through Regularization

Add additional fairness regularizer R(D, θ) and minimize

−L(D; θ) + ηR(D, θ) +
λ

2
‖θ‖22

Inspired from KL divergence

R(D, θ) =
∑

(xi,ai )∈D

∑
y∈{0,1}

Pr[y |xi, ai ;Θ] ln
P̂r[y |ai ]

P̂r[y]

Minimize the difference of distribution Pr[y |ai ], Pr[y]
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Postprocessing Methods - Rejection Option Classification

Adjust uncertain prediction based on group membership
Critical region
∀x ∈ {x ∈ X : max {Pr[c+ |x], 1 − Pr[c+ |x]} < θ}, 0.5 < θ < 1

If x < Xp, then ci = c+
If x ∈ Xp, then ci = c−

Standard decision rule
∀x ∈ {x ∈ X : max {Pr[c+ |x], 1 − Pr[c+ |x]} ≥ θ}, 0.5 < θ < 1

ci = arg max{c+,c− }{Pr[c+ |x],Pr[c− |x]}
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Experiment Setting

Dataset Protected Attribute Target
Student Performance Dataset Sex Grade ≥ 60%?

Adult Income Dataset Race, Sex Salary ≥ 50K?
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Prediction Bias Revisited

Underrepresented groups are bias by machine learning algorithm
African-American, Native-American, Asian, Female...
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Student Performance Dataset - Preprocessing
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Student Performance Dataset - In-Processing
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Student Performance Dataset - Postprocessing
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Adult-Income Dataset - Preprocessing
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Adult-Income Dataset - In-Processing
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Adult-Income Dataset - Postprocessing
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Summary and Future Work

Summary
Review of different metrics and fairness-preserving algorithms
Comparison of intervention methods in different phases of machine
learning application

Future Work
Fairness in deep learning and reinforcement learning
Insight and interpretation from causal reasoning
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Thank you for your listening!
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Question and Answer
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