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Background and Motivation

@ Algorithmic Decision Making (ADM)
system is widely used in daily life
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@ But they do not necessarily give fair
predictions
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Two Numerical Examples - Student Performance Dataset

@ Underrepresented groups are biased by machine learning algorithms
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Two Numerical Examples - Student Performance Dataset

@ Underrepresented groups are biased by machine learning algorithms

@ Female
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Two Numerical Examples - Adult-Income Dataset

@ Underrepresented groups are biased by machine learning algorithms
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Two Numerical Examples - Adult-Income Dataset

@ Underrepresented groups are biased by machine learning algorithms
@ African-American, Asian-Pacific-Islander, Amer-Indian-Eskimo, Female
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A machine learning algorithm is said to be fair when predicted outcomes
operating on data is non-discriminatory for people based on their protected
status such as race, sex, etc.
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A machine learning algorithm is said to be fair when predicted outcomes
operating on data is non-discriminatory for people based on their protected
status such as race, sex, etc.

@ How to characterize the fairness (non-discrimination) of prediction?

@ What methods are available to enforce non-discriminatory prediction?
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Fair Metrics Overview

@ Two types of principle

FAIRNESS TREE

Do you want to be fair based on disparate representation or based on
disparate errors of your system?

Do you need to select equal # of people from each group

Are your interventions punitive or assistive?
proportional to their percentage in the overall population?
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precision (or True Negative Negative Positve Rate Parity.
PPV) Parity Rate Parity. Predictive Value AKA Equality of
(NPV) Parity Opportunity
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"We Are Equal" (WAE): all groups are similar abilities with respect to the

task
"What You See is What You Get" (WYSIWYG): observations reflect

ability with respect to the task.

FAIRNESS TREE

Do you want to be fair based on disparate representation or based on
disparate errors of your system?

Do you need to select equal # of people from each group
OR Are your interventions punitive or assistive?
proportional to their percentage in the overall population?
Punitive ‘Assistive
(could hurt individuals) (will help individuals)

A ouintervening Withia Are you intervening with a very

very small % of the . x
Ty Borotbonal ulation? small % of the population?
Parity
m ]

Opportunity

(NPV) parity

Also known as Equivalent to
Demographic or oparate Impas
Statistical Parity Disparate Impact False False False False
Discovery Positive Omission Negative
Rate Parity Rate Parity Rate Parity Rate Parity
e Rl Rl e UCLA
precision (or True Negative : positve Rate Parity.
PPY) Parity Rate parity predictive Value | | AKA Equalityof

irness in Machine Learning




Fair Metrics Overview

@ Two types of principle
"We Are Equal" (WAE): all groups are similar abilities with respect to the

task
"What You See is What You Get" (WYSIWYG): observations reflect

ability with respect to the task.
@ Turn to fairness tree

FAIRNESS TREE

Do you want to be fair based on disparate representation or based on
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Fairness-Preserving Algorithms Overview

Proprocessing Methods Adjust feature space

Feature Extraction and Scaling
Feature Selection

Dimensionality Reduction
Sampling
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In-Processing Methods Adjust machine learning algorithms with fairness
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Fairness-Preserving Algorithms Overview

Proprocessing Methods Adjust feature space

In-Processing Methods Adjust machine learning algorithms with fairness
constraints

Postprocessing Methods Adjust prediction result

Feature Extraction and Scaling
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Preprocessing Methods - Uniform Sampling

e YA e {a,as - ,an}, y € {c1,Co, -+ ,Cm}, compute weight associated
with each group (&, ¢;)

ixe X:A=alllixe X :y=c¢}
Dllix e X :A=a,y =¢l}l
Pr[A = aj] Prly = ¢

- PrlA = a,y = ¢

W(ai’ Cj) =
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- PrlA = a,y = ¢
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@ Uniform sampling O with weights W (a;, ¢;)
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In-Processing Methods - Fairness through Regularization

@ Add additional fairness regularizer R(D, ) and minimize

A
—L(D;60) +nR(D,0) + EIIHIIS
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In-Processing Methods - Fairness through Regularization

@ Add additional fairness regularizer R(D, ) and minimize
A 2
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In-Processing Methods - Fairness through Regularization

@ Add additional fairness regularizer R(D, ) and minimize
A 2
-L(D;0) +nR(D,0) + EIIHIIQ

o Inspired from KL divergence

RD.0) = Z Z Prlylx; a;; ©]In —P;%da,-]

(xi,a;)€D ye{0,1} D/]

e Minimize the difference of distribution Pr[y|a;], Pr[y]

UCLA

Guanqun Yang (UCLA) Fairness in Machine Learning CS260, 2018 10/22



Postprocessing Methods - Rejection Option Classification

@ Adjust uncertain prediction based on group membership
o Critical region
Vx € {x € X : max {Pr[c*|x],1 — Pr[c*|x]} < 6}, 0.5 <6 < 1
o Ifx ¢ XP, thenc; =c*
o If x e XP,thenc; =c~
o Standard decision rule
Vx € {x € X : max {Pr[c*|x],1 — Pr[c*|x]} > 0}, 0.5 <6 <1
e ¢; = argmax g+ o {Pr[c*|x], Pr[c™|x]}
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Dcbiascd
Algorithm

Preprocessing

Debiaser A

Postrocessing
Debiaser

Algorithm

Algorithm

Dataset Protected Attribute Target
Student Performance Dataset Sex Grade > 60%?
Adult Income Dataset Race, Sex Salary > 50K? UCLA
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Prediction Bias Revisited

o Underrepresented groups are bias by machine learning algorithm

FDR FPR
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Prediction Bias Revisited

o Underrepresented groups are bias by machine learning algorithm

@ African-American, Native-American, Asian, Female...
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Student Performance Dataset - In-Processing

Average Accuracy
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Student Performance Dataset - Postprocessing
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Adult-Income Dataset - In-Processing
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Adult-Income Dataset - Postprocessing
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Summary and Future Work

@ Review of different metrics and fairness-preserving algorithms

@ Comparison of intervention methods in different phases of machine
learning application

UCLA

Guanqun Yan CLA) Fairness in Machine Learning CS260, 2018 20/22



Summary and Future Work

@ Review of different metrics and fairness-preserving algorithms

@ Comparison of intervention methods in different phases of machine
learning application

e FHairness in deep learning and reinforcement learning

o Insight and interpretation from causal reasoning
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Thank you for your listening!
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Question and Answer
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