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Background

Number of elderly-involved accidents is growing.
Most are related to unexpected falls.

Elderly care service becomes unaffordable.
Average elderly care service could cost more
than $6844 per month (as of 2016).

1 Suitable for repetitive duties
2 Higher efficiency and accuracy

Insight
Mobile robot could take a role in elderly care service, specially fall prevention.
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Objective

Detect a safe route
Lead the user to his/her destination

Result: Secure Path
Input: Environment Map
while map not fully explored do

exploring environment and detecting dangers;
if danger detected then

DangerLevel = DangerEvaluation();
DangerSpotAnnotation(DangerLevel);

else
SafetySpotAnnotation();

end
end
SecurePath = MotionPlanning();

Involving indoor mapping, object detection and path planning.
Individually accomplished by DL, SLAM and RL.
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Hospital Scene Dataset Preparation

The requisite of applying object detection network to our application.
No application-specific dataset is available.
Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories Number of Images Image Size
29 2900 256 × 256
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Object Detection Based on YOLO

Detection Framework mAP FPS
Fast R-CNN 70.0 0.5

Faster R-CNN ResNet 76.4 5
Faster R-CNN VGG-16 73.2 7

SSD300 74.3 46
SSD500 76.8 19

YOLO 256 × 256 69.0 91

A real-time detection system with
high accuracy
Fine tune the network to suit our
purpose

Network Fine-tuning Procedure
1 Size and similarity of customized

dataset
2 Large dataset: fine tuning entire

network regardless of similarity
Small dataset: only allowed when
similarity is low
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Experimental Result

Fine-tuned object detection system could detect items previously not
applicable.
Real time detection in video stream
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Reinforcement Learning-Based Motion Planning

Trial and error learning through interaction to achieve optimal action
sequence

Start -1 0
0 -1 0
0 0 10

Problem State
Markov Decision Process (〈S,A,P,R, s0〉)

1 st ∈ S, s0 and at ∈ A: state, initial state and
action

2 P(st+1 |st, at ): system dynamics
3 R(st+1 |st, at ): reward

Could be solved with dynamic programming (DP)
Result: Optimal action π(s) at each state s
for k = 1 : ∞ do

Vk[s] = maxa
∑

s′ P(s′ |s, a)R(s′|s, a) + γVk−1[s′];
if ∀s, |Vk (s) − Vk−1(s) | < ε then

π(s) = argmaxa
∑

s′ P(s′ |s, a)R(s′|s, a) + γVk−1[s′];
end

end
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Experimental Result

Providing an annotated map
Complicated danger distribution

One secure route could be autonomously detected.
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Summary

What Has Been Done
A hospital scene-specific dataset
Application of YOLO in hospital scene
Previously environment from expert⇒
Autonomous and precise perception of environment

Future Work
Collecting more data for dataset
Integration of entire system
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Thank you for your listening!
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Question and Answer
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