A Study on Autonomous Motion Planning of Mobile Robot by Use of Deep Reinforcement Learning for Fall Prevention in Hospital

Guanqun Yang

University of California, Los Angeles Department of Electrical and Computer Engineering

Japan-US-Canada Advanced Collaborative Education Program, 2018

1 Introduction

- 2 An Hospital Scene Image Dataset
- 3 Danger Detection Using YOLO
- Motion Planning Based On Reinforcement Learning

5 Summary

UCLA

-

∃ >

• Number of elderly-involved accidents is growing.

• Most are related to unexpected falls.

• Elderly care service becomes unaffordable.

• Average elderly care service could cost more than \$6844 per month (as of 2016).

Suitable for repetitive dutiesHigher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

Number of elderly-involved accidents is growing. Most are related to unexpected falls.

Elderly care service becomes unaffordable.
Average elderly care service could cost more than \$6844 per month (as of 2016).

Suitable for repetitive dutiesHigher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

• Number of elderly-involved accidents is growing.

• Most are related to unexpected falls.

• Elderly care service becomes unaffordable.

- Average elderly care service could cost more than \$6844 per month (as of 2016).
- Suitable for repetitive dutiesHigher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

Background

- Number of elderly-involved accidents is growing.
 Most are related to unexpected falls.
- Elderly care service becomes unaffordable.
 - Average elderly care service could cost more than \$6844 per month (as of 2016).
- Suitable for repetitive dutiesHigher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

Background

• Number of elderly-involved accidents is growing.

• Most are related to unexpected falls.

• Elderly care service becomes unaffordable.

- Average elderly care service could cost more than \$6844 per month (as of 2016).
- Suitable for repetitive duties
- Itigher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

Background

- Number of elderly-involved accidents is growing.
 - Most are related to unexpected falls.
- Elderly care service becomes unaffordable.
 - Average elderly care service could cost more than \$6844 per month (as of 2016).
- Suitable for repetitive duties
- 2 Higher efficiency and accuracy

Insight

Mobile robot could take a role in elderly care service, specially fall prevention.

• Detect a safe route

Lead the user to his/her destination
 Result: Secure Path
 Input: Environment Map
 while map not fully explored do

 exploring environment and detecting danger
 if danger detected then
 DangerLevel = DangerEvaluation();
 DangerSpotAnnotation(DangerLevel);
 else

```
SafetySpotAnnotation();
```

end

SecurePath = MotionPlanning();

- Involving indoor mapping, object detection and path planning.
- Individually accomplished by DL, SLAM and RL,

Guanqun Yang (UCLA)

• Detect a safe route

• Lead the user to his/her destination

Result: Secure Path

Input: Environment Map

```
while map not fully explored do
```

exploring environment and detecting dangers;

if danger detected then

DangerLevel = DangerEvaluation();

```
DangerSpotAnnotation(DangerLevel);
```

else

```
SafetySpotAnnotation();
```

end

```
SecurePath = MotionPlanning();
```

- Involving indoor mapping, object detection and path planning.
- Individually accomplished by DL, SLAM and RL,

- Detect a safe route
- Lead the user to his/her destination
- Result: Secure Path
- Input: Environment Map
- while map not fully explored do
 - exploring environment and detecting dangers;
 - if danger detected then
 - DangerLevel = DangerEvaluation();
 - DangerSpotAnnotation(DangerLevel);

else

```
SafetySpotAnnotation();
```

end

end

SecurePath = MotionPlanning();

- Involving indoor mapping, object detection and path planning.
- Individually accomplished by DL, SLAM and RL,

- Detect a safe route
- Lead the user to his/her destination
- Result: Secure Path
- Input: Environment Map

```
while map not fully explored do
```

- exploring environment and detecting dangers;
- if danger detected then
 - DangerLevel = DangerEvaluation();
 - DangerSpotAnnotation(DangerLevel);

else

```
SafetySpotAnnotation();
```

end

end

```
SecurePath = MotionPlanning();
```

• Involving indoor mapping, object detection and path planning.

Individually accomplished by DL, SLAM and RI

- Detect a safe route
- Lead the user to his/her destination
- Result: Secure Path
- Input: Environment Map

```
while map not fully explored do
```

- exploring environment and detecting dangers;
- if danger detected then
 - DangerLevel = DangerEvaluation();
 - DangerSpotAnnotation(DangerLevel);

else

```
SafetySpotAnnotation();
```

end

end

```
SecurePath = MotionPlanning();
```

- Involving indoor mapping, object detection and path planning.
- Individually accomplished by DL, SLAM and RL,

• The requisite of applying object detection network to our application.

- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories	Number of Images	Image Size
29	2900	256×256

UCLA

• □ ▶ • • □ ▶ • • □ ▶ • •

- The requisite of applying object detection network to our application.
- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories	Number of Images	Image Size
29	2900	256×256

< □ > < 凸 →

- The requisite of applying object detection network to our application.
- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories	Number of Images	Image Size
29	2900	256×256

- The requisite of applying object detection network to our application.
- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories	Number of Images	Image Size
29	2900	256×256

- The requisite of applying object detection network to our application.
- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Guanqui	n Yang (UCLA)	Robot M	fotion Planning Using DRL		JUACEP.	2018	5/12
				< □ ▶	◆週 → ◆ 臣 → ◆ 臣 →	-21×	500
	29		2900		256×256	ι	JCLA
	Number of Ca	tegories	Number of Ima	ges	Image Size		

- The requisite of applying object detection network to our application.
- No application-specific dataset is available.
- Create dataset from scratch.

Table: Statistics of Dataset

Number of Categories	Number of Images	Image Size	
29	2900	256×256	UCLA
	∢ □		三日 のへの

Guanqun Yang (UCLA)

Robot Motion Planning Using DRL

JUACEP, 2018 5 / 12

Detection Framework	mAP	FPS
Fast R-CNN	70.0	0.5
Faster R-CNN ResNet	76.4	5
Faster R-CNN VGG-16	73.2	7
SSD300	74.3	46
SSD500	76.8	19
YOLO 256 × 256	69.0	91

- A real-time detection system with high accuracy
- Fine tune the network to suit our purpose

- Size and similarity of customized dataset
- Large dataset: fine tuning entire network regardless of similarity Small dataset: only allowed when similarity is low

Detection Framework	mAP	FPS
Fast R-CNN	70.0	0.5
Faster R-CNN ResNet	76.4	5
Faster R-CNN VGG-16	73.2	7
SSD300	74.3	46
SSD500	76.8	19
YOLO 256 × 256	69.0	91

- A real-time detection system with high accuracy
- Fine tune the network to suit our purpose

- Size and similarity of customized dataset
- Large dataset: fine tuning entire network regardless of similarity Small dataset: only allowed when similarity is low

Detection Framework	mAP	FPS
Fast R-CNN	70.0	0.5
Faster R-CNN ResNet	76.4	5
Faster R-CNN VGG-16	73.2	7
SSD300	74.3	46
SSD500	76.8	19
YOLO 256 × 256	69.0	91

- A real-time detection system with high accuracy
- Fine tune the network to suit our purpose

- Size and similarity of customized dataset
 - Large dataset: fine tuning entire network regardless of similarity Small dataset: only allowed when similarity is low

Detection Framework	mAP	FPS
Fast R-CNN	70.0	0.5
Faster R-CNN ResNet	76.4	5
Faster R-CNN VGG-16	73.2	7
SSD300	74.3	46
SSD500	76.8	19
YOLO 256 × 256	69.0	91

- A real-time detection system with high accuracy
- Fine tune the network to suit our purpose

- Size and similarity of customized dataset
- Large dataset: fine tuning entire network regardless of similarity Small dataset: only allowed when similarity is low

- Fine-tuned object detection system could detect items previously not applicable.
- Real time detection in video stream

- Fine-tuned object detection system could detect items previously not applicable.
- Real time detection in video stream

- Fine-tuned object detection system could detect items previously not applicable.
- Real time detection in video stream

• Trial and error learning through interaction to achieve optimal action sequence

Start	-1	0
0	-1	0
0	0	10

roblem State

- Markov Decision Process (⟨S, A, P, R, s₀⟩)
 s_t ∈ S, s₀ and a_t ∈ A: state, initial state and action
 P(s_{t+1}|s_t, a_t): system dynamics
 - \bigcirc $R(s_{t+1}|s_t, a_t)$: reward
- Could be solved with dynamic programming (DP)

Result: Optimal action $\pi(s)$ at each state sfor $k = 1 : \infty$ do $V_k[s] = \max_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ if $\forall s, |V_k(s) - V_{k-1}(s)| < \epsilon$ then $|\pi(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ end

UCLA

《曰》《圖》《曰》《曰》 되는

• Trial and error learning through interaction to achieve optimal action sequence

Start	-1	0
0	-1	0
0	0	10

Problem State

- Markov Decision Process ((*S*, *A*, *P*, *R*, *s*₀))
 - $s_t \in S$, s_0 and $a_t \in A$: state, initial state and action
 - **2** $P(s_{t+1}|s_t, a_t)$: system dynamics
 - $I (s_{t+1}|s_t, a_t): reward$

• Could be solved with dynamic programming (DP)

Result: Optimal action $\pi(s)$ at each state sfor $k = 1 : \infty$ do $V_k[s] = \max_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ if $\forall s, |V_k(s) - V_{k-1}(s)| < \epsilon$ then $\mid \pi(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ end

UCLA

イロト (得) (ヨ) (ヨ)

• Trial and error learning through interaction to achieve optimal action sequence

Start	-1	0
0	-1	0
0	0	10

Problem State

- Markov Decision Process ((*S*, *A*, *P*, *R*, *s*₀))
 - $s_t \in S$, s_0 and $a_t \in A$: state, initial state and action
 - **2** $P(s_{t+1}|s_t, a_t)$: system dynamics
 - $I (s_{t+1}|s_t, a_t): reward$

• Could be solved with dynamic programming (DP)

Result: Optimal action $\pi(s)$ at each state *s*

for
$$k = 1 : \infty$$
 do

$$\begin{vmatrix} V_k[s] = \max_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s']; \\ \text{if } \forall s, |V_k(s) - V_{k-1}(s)| < \epsilon \text{ then} \\ | \pi(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s']; \\ \text{end} \end{vmatrix}$$

end

• Trial and error learning through interaction to achieve optimal action sequence

Start	-1	0
0	-1	0
0	0	10

Problem State

- Markov Decision Process ($\langle S, A, P, R, s_0 \rangle$)
 - $s_t \in S$, s_0 and $a_t \in A$: state, initial state and action
 - 2 $P(s_{t+1}|s_t, a_t)$: system dynamics
 - $I (s_{t+1}|s_t, a_t): reward$
- Could be solved with dynamic programming (DP)

Result: Optimal action $\pi(s)$ at each state sfor $k = 1 : \infty$ do $V_k[s] = \max_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ if $\forall s, |V_k(s) - V_{k-1}(s)| < \epsilon$ then $|\pi(s) = \operatorname{argmax}_a \sum_{s'} P(s'|s, a) R(s'|s, a) + \gamma V_{k-1}[s'];$ end

end

• Providing an annotated map

• Complicated danger distribution

• One secure route could be autonomously detected.

UCLA

-

• Providing an annotated map

- Complicated danger distribution
- One secure route could be autonomously detected.

- Providing an annotated map
 - Complicated danger distribution
- One secure route could be autonomously detected.

What Has Been Done

- A hospital scene-specific dataset
- Application of YOLO in hospital scene
- Previously environment from expert ⇒
 Autonomous and precise perception of environment

Future Work

- Collecting more data for dataset
- Integration of entire system

What Has Been Done

- A hospital scene-specific dataset
- Application of YOLO in hospital scene
- Previously environment from expert ⇒
 Autonomous and precise perception of environment

Future Work

- Collecting more data for dataset
- Integration of entire system

Thank you for your listening!

Guanqun Yang (UCLA)

э

• • • • • • • • • • • •

Question and Answer

Guanqun Yang (UCLA)

メロトメ 御と メヨトメヨ